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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-Qkh

CONFIGURATION FACTORS FOR EXCHANGE OF RADIANT ENERGY
BETWEEN AXISYMMETRICAL SECTIONS OF CYLINDERS,
CONES, AND HEMISPHERES AND THEIR BASES

By Albert J. Buschman, Jr., and Claud M. Pittman
SUMMARY

Radiation-interchange configuration factors are derived for axisym-
metrical sections of cylinders, cones, and hemispheres radiating inter-
nally to annular and circular sections of their bases and to other axisym-
metrical sections. The general procedure of obtaining configuration
factors is outlined and the results are presented in the form of equations,
tables, and figures.

INTRODUCTION

The high temperatures which are encountered in components of seroc-
space vehicles have brought about a renewed interest in heat transfer
by radiation. For certain components, the heat transferred by radiation
can be shown to overshadow that transferred by conduction. In the present
peper axisymmetric radiation for some common axisymmetric shapes is
studied.

Radiative transfer of heat from one area to another depends, among
other things, upon the fraction of the radiant energy emitted by one area
which is intercepted by a second area. This fraction is identified by
several names, such as the configuration factor, the interchange factor,
the angle factor, or the geometric view factor, and is a function of the
geometrical relation of the areas involved. In the present paper, the
term configuration factor will be used to designate the fraction.

Configuration factors are available for radiation between various
surfaces (see refs. 1, 2, and 3) but, for the most part, the areas which
are involved are plane. The purpose of the present paper 1s to provide
configuration factors for some of the more common nonplanar surfaces.
Some of the configuration factors presented herein are obtained, in

- appendix A, by integrating the basic equation which defines the factor



and the remainder are obtained, in appendix 3, by the application of
configuration-factor algebra. The techniques of configuration-factor
algebra make it possible, in some situations. to obtain the desired
configuration factor from available factors without the need for
Integration.

In addition to being listed in tables and given in the form of
equations, the results are presented in carpet plots which permit an
estimate of the magnitude of a given factor end show the effect of
varying the proportions of the surfaces involved.

SYMBOLS
A area
a radius of the base of a surface of revolution
c circular area
F configuration factor defined by equation (4)
H height of a cone

J,k,m,n integers

Lﬁ length between the mth and nth plares

M nondimensional parameter, rl/a

N nondimensional parameter, L%/g

q energy per unit time

Rg area of ring between the mth and nth planes

r radius of circle

] distance between centers of the areas exchanging radiant
energy

T absolute temperature

X, ¥, 2 Cartesian coordinates

[\VANORNO NN o}



p,0,2 polar coordinates

0,0, spherical coordinates

o Stefan-Boltzmann constant

¥ half the apex angle of & cone

Vn angle between the normal to the area Ap and the line between

centers of the area A; and the area which intercepts
radiation from Ap

w solid angle
Subscripts:
0,1,2,3% J,k,n identification of an area, plane, or point

Cj circular area in the base of a body of revolution

C an annular area in the base of & body of revolution
b Cy,xk =Cj - C
( APPSRl B k)

dAl,dA.2 from an area dAl to an area dA,

Jyk from an area J to an area k

Superscripts:

1,2, 3,a,H,m,n identification of an aresa, plane, or point
ANATYSIS

Black-Body Radiation Between Two Isothermal
Surfaces of Arbitrary Orientation

Consider the exchange of radiant energy between two isothermal
black surfaces, A; and A2, of arbitrary orientation separated by a

nonabsorbing medium as shown in figure 1. The energy per unit time
leaving the first elementary surface dA; in the direction of the

second dAs> 1s given by (see ref. 1)

dqul = % Tt cos ¥y dA; (1)



where

q energy, per unit time

o Stefan-Boltzmenn constant

Tl absolute temperature of dAl

¥y angle between normal to dA, and line between centers of

areas dAl and dA2

The portion of the energy per unit time leaving dAl which is

intercepted by dAp, depends upon the solid sngle dw subtended by dAp
and can be expressed as

dqu,dA2=%TlcoswléAldm (2)

where

and S 1is the distance between the centers cf the areas dAl and dA2.

The energy per unit time which leaves the surface dA, and is
intercepted by the surface dA, (eq. (2)) cen therefore be expressed as

Th cos Wl cos ¢2

_a
Qgn a8, =7 11 52 Ay dhy (3)
By defining
1 cos Wl cos We
F = = dA 4
equation (3) becomes
- oT*AF (5)

5,8, 17°1°4,, 4,
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The term FAl A depends only upon the geometric configuration of the
2

two surfaces and 1s known as the configuration factor. The configura-
tion factor is defined as the fraction of the total energy per unit time
which leaves a surface and is intercepted by a second surface. The above
procedure can be repeated to determine the energy per unit time which
leaves the second surface and is intercepted by the first with the fol-
lowing results:

Iy, ) = TTHTA, A (&)

where

1 cos wl cos We .
Thoyty T Ty “/;2 ‘/;1 g° R )

It can be seen from equations (4) and (7) that

AF (8)

1A, Ay T RoFay,ay

Equation (8) 1s known as the reciprocity theorem and, as is seen
in appendix B, 1s very useful in the application of configuration-factor
algebra. For brevity, whenever the areas involved are understood, equa-
tion (8) 1s written as

AFy 0 = AFp 4

The net exchange of radiant energy between Al and A2 of fig-

ure 1, obtained as the difference between equations (5) and (6) and
simplified by the reciprocity theorem, is

{ - ) (9)

Black-Body Radiation in Closed Systems

Consider a closed system composed of n isothermal black-body
surfaces separated by a nonabsorbing medium. The net heat flow result
as presented for two isothermal black-body surfaces can be extended to
include the n isothermal black surfaces in the following manner.

According to the Stefan-Boltzmenn law, the radiant energy leaving
an isothermal surface J is



chAj (10)

The radiant energy incident upon the area Aj from all other surfaces

in the system is
wipn
Z oT Ay 5 (11)
k=1

so that the net exchange of energy becomes

n

Gnet = OTjA; - X O X, 3 (12)
k=1

Finally, equation (12) can be reduced by applying the reciprocity theorem
to obtain the following equation:

n

4 b
et = Ay|Ty - Z T3, x (13)
k=1

With a knowledge of the configuration factors FJ X’ equation (13)
2

can be used to obtain heat flows or temperature distributions 1n a closed
system. Reference 4 demonstrates the use of equation (13) when radiant
heat transfer is accompanied by heat transfer by conduction.

Configuration Factors

In practice, configuration factors can e obtained by experimental,
numerical, and analytical means. (See, for example, ref. 1.) In the
present paper, some configuration factors ar2z found directly from equa-
tion (4) and some indirectly from equation (+) through configuration-
factor algebra.

The shapes considered are surfaces of ravolution (cylinder, cone,
and hemisphere) with the ends closed by plan2 surfaces. All areas con-
sidered are axisymmetrical and therefore the resulting configuration
factors are applicable only to surfaces exhisiting axisymmetrical tem-
perature distributions.

In the study of radiant heat transmission within a system composed
of a body of revolution and a base plane six types of general configuration
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factors are required. These six types of configuration factors, which
are derived in the present paper, are shown in figure 2 for the case
where the surface of revolution is a cylinder. Similar configuration
factors have been determined for the cone and hemisphere.

In all six configurations, the surface of revolution is divided into
rings by one or more planes which are parallel to the base at heights of
I%, lg, . .o 18. The subscripts and superscripts indicate the planes
between which the length is measured (zero being the base plane) so that

the rings between these planes will be known as Ré, RS, e . Rg.

Areas in the base plane considered are either circular or annular
and are designated by CO, Cl’ . e . Chp and by Cn—l,n’ respectively.
The circular area Cg represents the full base of the cylinder so that
Ch-1 > Cn. The annular region Cn-l,n represents the region between the

circular areas C, 1 and Cp so that
Cn'l)n - Cn-l

Since the circular and annular areas are normally in the base plane,
there is usually no need to specify the plane in which they lie. How-
ever, for a few cases it is necessary to specify the plane and this will

be done by the use of superscripts. For example, cﬁ-l,n = Cﬁ-l - Cﬁ

so that the annular region is in the mth plane and is equal to the area
contailned between concentric circles in that plane. Whenever C terms
appear without superscripts the area is understood to be in the base plane.

By using this method, R(])‘,Cl would indicate a ring on the surface

of revolution extending from the base plane to the first plane above the
base exchanging radiant energy with a circular area C; in the plane of

the base. In the same manner Ri,Cl 5 would indicate a ring lying
2

between the first and second planes above the base exchanging radiant
energy with an annular area, Cj - Cp, in the base plane.

By using this symbolism, the six configurations presented in fig-

ure 2 are designated as R%,Cl, R%,Cl, R%,Cl,e, Ri’cl,z’ R%,R%,

2 g2,

and Rl’ 1



The derivation of the configuration factors is presented in the
L ¢
0’ 1
obtained by integration of equation (4) for cylinders, cones, and hemi-
spheres in appendix A. With the exception of R%,Ré for the hemisphere,

the remaining configuration factors are obteined by using configuration-
1
0’71’
The use of configuration-factor algebra is explained and demonstrated
in appendix B where configuration factors are given for the geometries
2 1 2 3 51 2 .2 b)
of Rl’cl’ RO’Cl,E’ Rl’cl,E’ R2’RO’ and Rl’Rl' The geometry R2,R
for the hemisphere is not amenable to the use of confilguration-factor
algebra. This situation results from the fsct that configuration-factor

algebra depends to a large extent on dealing with similar surfaces and

appendixes. The configuration factors for the geometry of R are

factor algebra and the equations derived foir the geometry of R

1
0

the geometry of R;,Ré results in spherical segments which are not

hemispheres. Therefore, the result for this case is obtained by integra-
tion in appendix A.

RESULTS AND DISCUSSION

Since all the configuration factors given in the present paper are

obtained with one exception (R;Ré for a hemtsphere) from three primary
equations (A7), (Al6), and (A26) involving tne geometry of RéCl and
configuration-factor algebra, only evaluatiois of these three equations
will be discussed in any detail in this sectlon. The configuration
factor derived in appendix A for RZR; when the surface of revolution

is a hemisphere 1s elementary and will not require discussion.

Table I is a summary which indicates, b;r number, the proper equa-
tion to use for the cases previously described. In addition to the
specific surfaces of revolution treated in detall, fundamental equations
are indicated for use with an arbitrary surfuce of revolution.

Cylinders

The configuration factor for the geometiy R%,Cl when the surface

of revolution is a cylinder is derived in appendix A and is given by
equation (A7). Equation (A7) is given in a rondimensional form by
equation (A8) which is

N\O\O



[V;“ co(1+m2) + (1-M2)° - (1-R) - N%]

1

F = =

1 4N
RorC1

The nondimensional parameters are

M= rl/a

=
]

of
ID a
where a 1s the radius of the base, r; 1s the radius of Cl’ and

Ig 1s the height of Ry, (See fig. 3.)

The term M 1is a ratio of the radius of area Cl to the radius

of the base of the cylinder CO, whereas the term N 1is & slenderness
ratio.

Teble II presents results from the nondimensional equation (A8)
for a wide range of rl/a and Lé/ . The data of table II are also
given in the form of a carpet plot in figure 4.

Cones

The configuration factor for the geometry of Ré,Cl when the sur-
face of revolution is a cone is derived in appendix A and is given by
equation (Al6), which is a lengthy equation that results from the evalua-
tion of a nonelementary integral. Because a large number of terms in
the equation must be defined, it wlll not be repeated in the text and
reference should be made to appendix A. Table III gives the results of
the evaluation of a nondimensional form of equation (A16) for combina-

tions of Lé/H and rl/a between 0.1 and 1.0 and for cone half-angles

0, and 200. The dimensions Ll and r, are as shown in

of 5°, 10 5 1

figure 5.

The data of table III are presented in the form of a carpet plot
in figure 6. Figure 6 contains three parts, one for each of the half-
angles considered. As expected, the evaluation of equation (Al7), shows
that the cone results approach the results obtained for the cylinder as
the base angle approaches =/2.
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Hemispheres

The configuration factor for the geometry of R(l),Cl when the sur-

face of revolution 1s a hemisphere is derivei in appendix A and is given
by equation (A26). Equation (A26) is given in nondimensional form by
equation (A27), which is

= 1}—N [\/(1 2% 4 e - (1 - MZ)}

F
1
Ry, Cy

where the nondimensional parameters are, as “or the cylinder,

M= rl/a

and the dimensions Lé,

presents results of the evaluation of equation (A27) for combinations
of rl/a and Lé/a between 0.1 and 1.0.

Ty and a are as shown in figure 7. Table IV

The data of table IV are presented in the form of a carpet plot in
figure 8. TFigure 8 shows that FR% c 1s censtant for all values of
s

N when M = 1.

CONCLUDING REMARKS

‘ Configuration factors are presented which can be used in heat-

transfer studies involving nonplanar surfaces at high temperatures.
These configuration factors have been derivec for axisymmetrical sec-
tions of cylinders, cones, and hemispheres rediating internally to
circular and annular regions of their bases cr to other axisymmetric
sections. Some of the factors were obtained by integrating fundesmental
equations expressed in terms of convenient ccordinates. The remainder
of the factors were obtained by utilizing configuration-factor algebra
and the results of the integrations. The use of configuration-factor
algebra i1s explained and demonstrated. The calculated radiation con-
figuration factors are given in tables and plots.

Langley Research Center,
National Aeronsutics and Space Administration,
Langley Air Force Base, Va., July 20, 1961.
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APPENDIX A

DERIVATION OF CONFIGURATION FACTORS FOR CYLINDERS,

CONES, AND HEMISPHERES BY INTEGRATION

The equation for the portion of the total radiation from an elemental
area dA; which is incident upon an elemental area dAp 1s derived in

the body of the paper as

cos Wl cos We
FA ’:r_A_lf f dA, dA, (A1)

where
S distance between dAl and dA2
Vi, Vs angles between the line joining the areas dA; and dA2 and

the normals to the respective areas.

The configuration factor will be derived for the most general case
of a section of a body of revolution extending from the base plane to a
given plane sbove it exchanging radiant energy with an axisymmetrical,
circular region located in the plane of the base as shown in figures 3,
5, and 7 for cylinders, cones, and hemispheres, respectively. The param-
eters of equation (Al), L4 ¢2, and S, must be expressed in terms of

the chosen coordinates so that the equation can be integrated.

In order to keep the solution as general as possible, the integra-
tion of equation (Al) will be carried out over surfaces designated as
Ay and A,. The area Ay will represent the area on the surface of

revolution Ré and the area A, will represent the circular area dl
in the base. This will apply throughout the derivation of the configura-

tion factor for the geometry of o’Cl for cylinders, cones, and hemi-

spheres. For the geometry of R3 R1 for a hemsiphere, the areas Al

2’70
and A2 represent the upper and lower rings, respectively. However, in
all cases the limits will be written in general terms.
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Configurations Factors for the Geometry Ré,Cl

Cylinder.- When the surface of revolution is a cylinder (see fig. 3),
the parameters of equation (Al) in terms of th: polar coordinates p, 6,
and z Dbecome

a - py cos(el - 92>

cos ¥ = 3 (A2)
cos ¥, = EZ;- (A3)
§° = 22 + 82 4+ 022 - 2aoecos(31 - 92) (Ak)

dAl =a del dz

dfiz = pp dpy A8

Integration over 6,5, from O to 2r (after substituting egs. (A2),
(A3), and (A4) into eq. %Al)), gives the confijguration factor from the
area dA; to the differential ring in the base 2np2 dp2 as

2 2 2\ .. 2
) 2z[a(z + ac + p2 ) 2ap2 ]p2 d02 dAl (A5)

22 3/2
[(z2 + 82 + p22) - haepze]

The configuration factor from the differerntial ares dAl to the

finite area Ay can be obtained from equation (A5) by integrating over
Pos from O to rq, which after rearranging gives

dAsF
1 dAl,tap2dp2

22 + 8.2 + I'12

F = 2
1"aay,¢y * 2a

dA dA, (46)

/2 !
[zh + 2(&2 + rlz)zg + (a2 - rle) ]

The following equation, obtained by integrating equation (A6) over

el from O to 2x and over z from O to L%, gives the configurastion
factor from the area Ay to the area A2:

[\VANO RO o
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L
e, 2 V) - ) (-
- (32 - rle) - (Lé)z (AT)

or in nondimensional form

[\/N’* pol(i ) s (- 18) - (1-18) - N2] (48)

1

F —
1

R3,Cy AN

where

M=r /a

N

1
e
Results obtained by evaluating equation (A8) in the range 0.1 SsM<1.0
and 0.2 SN S 200 are given in table II and figure k4.

A special case presents itself when A2 becomes the full area of
the base of the cylinder (M = 1). Equation (AB) then reduces to

(W - ) (49)

1
F ==
4

The reciprocity theorem can be employed to determine the configuration

factor from the base of the cylinder to the walls FC R%'
(o1

Cones.- When the surface of revolution is a cone (fig. 5), the
parameters of equation (A1) can be expressed as

cos ¥, = Egg—mlé - P cos(el - 82)] (A10)

cos V¥, = z (A11)

s
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_ .2 2 2 _ -
= 2% +0,° + o, 2plp2 cos(el 82) (A12)

82
dA2 =P, dp2 d92
where

¥y = Half apex angle

a = + 2z tan V¥

Py
Integration over 8% after substituting cquations (A10), (A1l),
Al

and (A12) into equation ) gives the configuration factor from the
ares dAl to the differential ring in the base as

2 2 2\ _ 2
2z cos V¥ dAl[a(? + Py + P, ) 2plp2 ]p2 d02

2 3/2
2 2 2\~ _ 2.2
[(Z LS > ko, P, ]

The configuration factor from the differential area dAl to the area Cl
is obtained by integrating equation (Al3) over Po from O to rq. It is

dA, F =
1 “dA,, 270,40,

pll‘t - .apl5 + ;312(2z2 - rlz) + apl<r12 - 22) + 22 <z2 + rle)

4p12[(z2 N 012)2 ' o le(zg _ ple) . rth 1/2

pl)‘L - e.pl5 + 2z2p12 - za,zzp:L + z2
B (a1k)
hplzz(ze } °12)

dAleAl’ Cl =2z cos ¥ dAl

Since the area Ay 1s a surface of revolutior, where

dAl = sec ¥ d6p dz

!
the configuration factor from an area R% to an area Cl after inte-
grating over 8, and collecting terms becomes

1 fL% (&le-j + b:l_z2 + Cq2 + dl)dz
ROI =7
RL, C 0

0’1

1/2
(agzn + b2z5 + c2z2 + dou + e2) /

1 3 2
i \/“10 ajz +2b52 + 032 + d5 s (A15)
0 8,z + buz + ¢y

MN\O\O
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where
a; = secuw
bl = -3a tan V¥ seczw

_ 2 2 2 2
cy = (ja - rle)tan ¥V + a8 - ry

_ - 2 _ 2
dl = -a tan w(a ry )
as = sechw
b, = -bg tan V¥ seczw

cp = 285(2 tan?y + sec?¥) + 2r2(1 - tany)
ay = -4a tan W(a2 - rle)

ep = (s - 1,?)
a5 = secuw

bs = -3a tan ¥ sec?y
cs = 82(3 tan®y + 1)
d5 = -adtan ¥

8, = secew

by = -2a tan ¥

a

Cy
For brevity, equation (Al5) will be written as
cos ¥ cot W(Il + IQ)

l -
RO)C]_ I%(H + Lg)
The first integral of equation (A15) is not an elementary integral
and it 1s necessary to introduce elliptic functions in order to evaluate
it. Reference U4 presents a method allowing integrals containing the

square root of a quartic in the denominator of the integrand to be put
into legendre's standard form of an elliptic integral.

F (m16)




16

By making use of reference 5 to evaluate the elliptic integrals
the first integral of equation (Al5) becomes:

Lg®
q-L(l)

(a - p) W 2( j WKlO) 2(“9 } WKIO) N
hL= secey K9(x + 1)2 ¥ Kg(x + 1) ) ]ch o P
B

. (Kf - WKE)E\};—;E% _ @(cpl, + E(9,,k)

K - WKig) K
12 KS < EC?\[:-KK%@D%CS% + E(P),k) + dngyesp, + E(:Pg’k)]

+

Ko (UKg - WKy3) - 2Kpo(VEg - WK10>/ 5
S i, VeZ - k2> e

L

q;l,kj] EC - 2(a, k)] Z q sir(2mw)sin 2mv1)

n sinh(2mp)

Z c'lmsin(Znﬁ)')sin<2mw'r2) 1 sin(cﬁ + 75 (\fs2 - k2 - sdnq>2>
+ - + = log

m sinh(2mp) 2 e
o sin - (Vs - K2 + sdnq>2)
sin(u) + vl) (\’ - k - sdnq)l)
sin w - v (\’s - ¥° + sdnq>l>

‘ (A17)

[\VANGANON o
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where

P and q are roots of the equation

(@ +3-B-B)n° + 2(BB - aa)n + aa(p + B) - pBla + &) = O

and where « and B are the nonconjugate roots of the quartic

and

A =

b c d e

L 2 . 3 2 2 2 2

Z =727 =25+ =2 +—==0
a5 ao 8 8p

ein-ly |6
K5 + K6

cs wn = cot wn

dn ¢

n

Jacobi elliptic function, V1 - K2sinZ_

EGPm,k) incomplete elliptic integral of the second kind

FT?n,k) incomplete elliptic integral of the first kind

G(x) = (K5 + Kgx)(K; + Kgx)

K,E

K’

]

K - K
modulus’ M
KEK#

complementary modulus, Vl - k2

complete elliptic integrals of the first and second kinds,
respectively

complete elliptic integral of the first kind with a modulus
of k' '

alq5 + blq2 +cq + dl
Balpq2 + blqe + 2blpq + 2clq + c,P + Bdl

Balpeq + 2blpq + blp2 + cq + 2clp + 3dl

17
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2
a.lp3 + blp + CyP + dl

K),

%5

Kg = q° - 2qRe(a) + Ic.

pe - 2pRe(a) + la‘e

2
|
K7 = p° - 2pRe(B) + |B\2

Kg = a° - 2qRe(B) + lBiz

Kg = -2(K5 + Kg)(¥r + Ke)
= 3(KsKg + KgKy + 2KgKg)
= —(K5K8 + KgKop + 6K6K8)

= 2K6K8

=~ A
e
O

1 |

~
=
no
t

U =KXy - 3K

_ fo@n,kg

Yn = g
V =Ky - 2Ky + 3K

W=K,+-K5+K2-Kl

Z(A, k) Jacobi Zeta function, E(A,k) - % F(A k)

X6

A\VANO RN o
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a
n
1]
t+
g
1
}_J
f Obb—‘
[]
o
TR

—  nF(Ak)
B = —
2K

The second integral of equation (Al5) is an elementary integral
which upon integration becomes

2
Ip = I -Seg—‘”(eﬁ sin2y + Lé) (418)

Equation (Al6) represents the fraction of the total radiant energy
which leaves surface Ay, the frustum of a right cone, and is inter-

cepted by surface A2, a plane circular area in the base of the cone.
If the intercepting area Ap 1s the entire base of the cone, the results

are greatly simplified. The procedure remains unchanged up to the inte-
gration of equation (Al15) which now contains two elementary integrals
whose integration yields

2

FRé, ‘q - m \I(Lé) esc?y + LHLY + csc w(eﬂ siny - L(])') (A19)

The configuration factor for the complete cone exchanging radiant
energy with the complete base becomes

F = sin A20
RE, c, ¥ (A20)

The configuration factor from the base of the cone to the walls
can be found from the reciprocity theorem with the aid of configuration-
factor algebra. (See appendix B.)

Hemisphere.- When the surface of revolution is a hemisphere (fig. 7),
the parameters of equation (Al) can be expressed as

2[&2 - P1Ps cos(el - Beﬂ

= (A21)

cos \l/l =
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cos ¥, = % (A22)

2 _ .2 2 _ -
8¢ = a% + o, 20,0, cos(el 62) (A23)

and

dAl = 8 del dz

dAy = Py dpp 48,

Integration over 6, after substituting equatlons (A21), (a22),

end (A23) into equation (Al) gives the configuration factor from the
aresa dAl to the differential ring in the basz as

) 2z dAl[(pl2 + z2)2 + (z2 - p12)022]p2 dp2

F =
17dA,, 2np dp 3/2
1’ 272 2

where & 1s the radius of the hemisphere. Integration of equation (A2L4)
over p, from O to ry gives, after some resrranging, the configura-

dA (A24)

tion factor from the differential area dAl to the aresa Cl as

2
zrq dAl

(A25)
1/2
a[rlLL + 2r12(2z2 - 52) + au] /

da

F =
1
dAq,Cq

Integrating over 6, from O to 2rn gives

2nrl2z cz

(a2 - r12)2 + Lrleze]

dAlFQKadZ,Cl - [ 1/2

Integrating over 2z from O to Lé gives the configuration factor

from area Ré to ares Cl as

\VANGANON o
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2
P 2@ () - (B n2)] )
R C | 1 1\0
0’ V1 aly
where ry is the radius of the circular area in the equatorial plane,

and Ll is the vertical height of the area Ré.

0

Equation (A26) may be put in nondimensional form by letting

M= rl/a
1
N = Lo/a

so that the configuration factor becomes

{ (1- M2)2 + PN - (1 - MQ)] (A27)

F - f;
1 N
B3 C1

An interesting and useful result can be obtained from equation (A25).
If Ap is taken as the total area of the base (i.e., r; = a), equa-

tion (A25) reduces to

dAy (128)
dA.F = —= A2
1 dAl,CO 2
By integrating over Al the following result is obtained:
1
F = = A2
Al’CO 5 (A29)

Now since Al has not been specified it follows that the configuration

factor from any area on the surface of a hemisphere to the equatorial
plane is one-hsalf.

Configuration Factors for the Geometry Rg,Ré for the Hemisphere

When the surfaces exchanging radiant energy are rings on the surface
of a hemisphere (fig. 9), the parameters of equation (Al) become
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cos ¥, = COS Wa
a ’
= §[l - sin 6, sin 6, cos(@l - QE) - cos 64 cos 62J (A30)
and
82 = 2&2[1 - sin 67 sin 65 cos(@l - 02) - cos ©; cos 92] (A31)

where @ and @ are as shown in figure 9.
Substitution of equations (A30) and (A31) into equation (Al) yields
dAl A

dA.F = -2 (A%2)
1 d‘Al’d‘AE LHTELQ

Since Ay 1s a surface of revolution
_ a2
dA, = a% sin 62 d62 el

integration of equation (A31l) is simplified end gives the configuration
factor from the differential area dAl to the ring Ré as

1
dA F ’Rcl> = ;’—; dhy (A33)

Integration over A; where

dAl = azsin el del ]

gives the configuration factor from a ring to a ring as

RJF 5 = nlgl3 (A34)
R2,R
(0]
The areas can be expressed as
Rg = 2naLg
and
Ré = 2naI%

\VANG AN ol
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so that

where Lé
segments.

and

F
3

R2: Ry

F =
103

RO,R2

3
12 are the vertlcal

1=

|
N
ol

el | o
PN

heights of the hemispherical

23

(A35)
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APPENDIX B
CONFIGURATION-FACTOR A .GEEBRA

It is possible to determine configuration factors for many cases
from existing configuratlion factors by utllizing the technique of
configuration-factor algebra (see the section entitled "Geometric Flux
Algebra" in ref. 1) and the previously mentioned reciprocity theorem.
The basic requirement involved in this technique is that the unknown
configuration factors be of such a nature that they can be expressed as
sums and differences of known configuration :‘actors. The procedure 1is
best explained by an example.

Example

Suppose that it 1s necessary to determine the configuration factor

from a ring on the surface of a cylinder Ri to an annular region C;
J

of the base as shown in figure 10. It will he shown that it is possible
to determine this configuration factor from -he configuration factors
for other geometries of figure 10 which are :"eadily obtalned from
equation (AT).

Equation (A7) gives the configuration factor for a particular
geometry. That is, the surface of the cylinder must extend from the
intersection of the base plane to any height above this intersection.
The intercepting area is also restricted in <hat it must be a circular
area the center of which is on the axis of revolution. It is therefore
necessary to express the desired configuration factor in terms of those
which have been obtained. This can be done us follows. From figure 10,
it can be seen that

2 2 :
RSF = RCF - RF (B1)
12 0 2 0" gl
and
2 _ w2 -
RlFR2 o " ROFR2 o RiF o (B2)
172 0’2 0’72

Since Cl,2 =0y - 02, then

nNO\O
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2 2 2
M2 c T MRe,c. T MR2C (33)
11,2 1 e

The left-hand side of equation (B3) can be expressed as the difference
of the right-hand sides of equations (B1) and (B2) as follows:

1 2
F = — |RA/F - F
RE,C 2 o< 2 2 )
’~1,2 RY R& €y R3 Cy
1 |
RO, Cl o, 2

If equation (A7) is used to determine the configuration factors within

the brackets, FR2 C can be expressed in terms of the cylinder dimen-
1’12

sions as

L 2 )

F -1 (L2) + 2(a2 +r 2><L2) + <a2 -r 2)

R%, C hal2 0 107 1
17v1,2  Helg

o S R A E
+ \[(I.é)11L + 2(&2 + r22>(Lé)2 + (32 - r22)2
o > 5
- \/(Lé) + 2(&2 + r12>(Lé) + <a2 - r12) (85)
Although figure 10 and the preceding example involve a cylinder,

the procedure applies equally as well when the surface of revolution is
a cone or a hemisphere.

2

The above example is a simple application of configuration-factor
algebra presented in order to introduce the basic ldeas which will now
be used to obtain the configuration factors for the geometries of
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2

1 2
R,Cpy RpCp o R

1’C1,2’ and R2’R§ for cylinders, cones, and hemi-

spheres as well as Rg,Ré for cylinders and cones. (See fig. 2 for
examples of these geometries.)

Configuration Factors for the Geometry R?_,Cl

The configuration factor for the geometry of Ri,Cl can be obtained

from the equation derived for the geometry of Ré,Cl through

configuration-factor algebra and 1s given in general terms by

1 /2 1
F - L [Rer - R:F . (B6)
2 0"'g2 o' R
TR ) < Ror €1 R Cl>

1 2 2
where RO, RO’ and R1 are ring areas.

Cylinder.- For a cylindrical surface of revolution, equation (A7)
can be used to determine the terms on the righi-hand side of equation (B6)
so that the configuration factor in terms of the dimensions of the cylin-
der becomes

n 2

"R2 o~ ::_IE \/(Lg) * 2(%) (a2 * r12> * ("2 - r12>2

1’71

2

) 2 ) () ] e

Cone.- For a conlcal surface of revolutior, equation (Al6) can be
used to determine the terms on the right-hand :ide of equation (B6) so
that the configuration factor in terms of the ¢imensions of the cone
becomes

cos ¥ cot ¥ 1

Fo =m0+ D) - (T + ) (28)
R2, ¢ 2 . 1
Y1 by + L LI -L5

P\O O
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where the integrals I, and I, are given by eguatlons (A17) and
(A18), respectively.

The first two integrals of equation (B3) are to be evaluated for

a frustum of height Lg and the second two are to be evaluated for a

frustum of height L% while all four integrals are to be evaluated for

an intercepting area of radius r;.

Hemisphere.- For a hemispherical surface of revolution, equa-
tion <A235 can be used to determine the terms on the right-hand side of
equation (B6) so that the configuration factor in terms of the dimensions
of the hemisphere becomes

2 2

2 2
FR%, o ) ;:11%_ \er(lé) * (32 } r12) } \[Arlg(%) * (32 - r12> (39)

1
Configuration Factors for the Geometry RO:Cl,2

1
The configuration factor for the geometry of RO,Cl 5 can be
3

obtained from the equation derived for the geometry of R(l),Cl through

configuration-factor algebra and is given in general terms by

F =F - F (B10)
1 1 1
R Ci,2  BypCy Byl

Cylinder.- For a cylindrical surface of revolution, equation (A7)
can be used to determine the terms on the right-hand side of equa-
tion (B10) so that the configuration factor in terms of the dimensions
of the cylinder becomes

) e )« (- )

N -
RorCi,2  hard

2

- \ﬂé )l* + 2(1,2)—)2(&2 + r22) + (a2 _ r22)2 N r12 _ 1.22 (B11)
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Cone.- For a conical surface of revolut:on, equation (A16) can be
used to determine the terms on the right-hanc. side of equation (B10O)
so that the configuration factor in terms of the dimensions of the cone
becomes

_cos ¥ cot ¥ T
Rl == = (Il + 12) ] (T + Ip) ) (B12)
1 2 2LgiH + Iy p=ry pP=T, 1
L=LO

Note that two integrals are evaluated for p = rl, two for p = Toy

and all four for a height LO

Hemisphere.- For a hemisphericsal surface of revolution, equa-
tion ZA265 can be used to determine the terms on the right-hand side

of equation (BlO) so that the configuration factor in terms of the
dimensions of the hemisphere becomes

2 2
_ 1 2/.1 2 2
el T Lol \/)*rl (LO) * (a RS! >

Ro) Cl, o) LI»a.LO

i \/ur22(L(l)) * (ae IR (B13)

Configuration Factors for the Geometry of Ri.Cl 5
)

The configuration factor for the geometry of R?_,Cl 2 can be

obtained from the equation derived for the geometry of RO, through

configuration-factor algebra. This has been performed in the section
entitled "Example" and is given by equation (B4).

Cylinder.- Equation (B5) gives the configuration factor for the
geometry of Ri’cl 5 for a cylindrical surface of revolution.
2

Cone.- For a conical surface of revolution, equation (Al6) can
be used to determine the terms on the right-hand side of equation (BY4)
80 that the configuration factor in terms of the dimension of the cone
becomes

NNO\O H
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_ cos ¥ cot ¥ _
oo @ ) [ P,
L-1°
0
- - L
(Il + 12) e, (Il + 12) o, l (B1k4)
Ly

Again it is to be noted that the sum of the integrals must be evaluated
for the correct combinations of p and L.

Hemisphere.- For a hemispherical surface of revolution, equa-
tion ZA235 can be used to determine the terms on the right-hand side of

equation (B4) so that the configuration factor in terms of the dimen-
sions of the hemisphere becomes

2 2 2 2

. \[urlz(Lg) e (@ -2 b 2E) - (- )

2 2 2 2
_ 2(;1 2 _ 2) 2( l) ( 2 _ 2)
\[ r (LO) + (a ry + \/Ltrg Ly) + (& r, (B15)
3 .1
Configuration Factors for the Geometry of R2,R0

The configuration factor for the geometry of Rg,Ré can be

obtained from the equation derived for the geometry of R(l),Cl through
configuration-factor algebra and is given in general terms by

1 3 2 3 2
F = = [{R{F - RSF - (RZF - RSF (B16)
321 3 ( 1" 3 1 172 A1 0" _3 0 2
R2, Ro R2 R I3 CO Rl} CO R0: CO RO’ CO

Cylinder.- For a cylindrical surface of revolution, equation (a9)
(a special case of (A7) when the intercepting area is the full base of
the cylinder) can be used to determine the terms on the right-hand side
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of equation (Bl6) so that the configuration fa:tor in terms of the dimen-
sions of the cylinder becomes

Fs 1" L—l—5 2LoLs + Li\/(xg)e + e - L%\/(Li)z + be?
aL.

2’70 )

- Lg\’(Lg)2 + ba® 4 Li\/(L%)B + ba® (B17)

Cone.- For a conical surface of revolutiol, equation (A19) (a
special case of equation (Al6) when the interc:pting area 1is the full
area of the base of the cone) can be used to d:termine the terms on the
right-hand side of equation (Bl6) so that the :onfiguration factor in
terms of the dimensions of the cone becomes

e 2

= 2 \|(x2 e HE 2y/2 2 H H

FR5 LT TR R 1\/(L1) cseSy + lmlL5 - Ll\/(Ll> csc Y + B L,
22Ro  2L3(Ls + L5)

- 18«18)2%024; + l+HLI5I + Lg\[(lg)zcs :2\V + 1+HI..I§

+ ZI%Lg cos ¥ cot ¥ (B18)

Hemisphere.- For a hemispherical surface of revolution, equa-
tion EA235 cannot be applied to equation (316) to determine the config-

1
uration factor for the geometry of Rg,Ro. This 1s because the first

two terms on the right of equation (Bl6) canno® be obtained from equa-
tion (A26), which is for hemispheres, since the surface of revolution
above plane 1 is a spherical segment. Therefore, the equation for the
configuration factor between rings on the surface of a hemisphere is
derived in appendix A (eq. (A35)) by integrating equation (4) over

Rl

3
0 and R2'

M\ O
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Configuration Factors for the Geometry Ri,Rﬁ

Radiation in a closed system composed of several isothermal surfaces
is further complicated by surfaces of positive curvature. A surface of
positive curvature Aj intercepts a portion of its own radiated energy

and a configuration factor of the form Fj,j must be determined. In

order to determine FJ,J’ use 1s made of the fact that if a surface Aj

is surrounded by (n - 1) other surfaces, forming a closed system, the
sum of the configuration factors between Aj and all surfaces is one,

or

>

Fyg =1 (B19)
k=1

If the surface Aj can see itself, equation (B19) can be written as
J-1 n_
Fy,0 =1~ :2 Fyx - :é Fik (B20)
k-1 k=j+1

For a surface of revolution, equation (B20) can be replaced by

F =1-F -F (B21)
2 2 2 A1 2 2
Rl,Rl Rl’CO Rl’CO
where Ri is the ring formed by the intersections of planes 1 and 2,

which are perpendicular to the axis of revolution. Areas Cé and Cg

are circular areas in planes 1 and 2 bounded by the surface of revolu-
tion. The last two terms in equation (B21l) represent the fractions of

radiation from Ri which fall on surfaces below and above R%,
respectively.
Cylinder.- If the surface of revolution is a cylinder

1.2
Co = Cp = Cop

and equation (B21l) reduces to

F =1 - 2F (B22)
2 .2 2 A1
R}, R] R1,Ch
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The configuration factor FR2 ol from the walls of a cylinder to
1’70

the base can be obtained from equation (A9), ard equation (B22) may then

be written in terms of the dimensions of the cylinder as

2
2 2
2=1+-L-'1-- 1+<-L—l-> (B23)
1

F
R‘i, R

It can be seen from equation (B23) that F 2 gt for a cylinder is
1’71

dependent upon the height of the ring but not upon the position of the

ring above the base of the cylinder.

Cone.- For a conical surface of revolutior

Fo o=F, (B2k)
Ry Co RS, R}
RH 2
where 5 is all the surface area above Rl'
By using equation (B24), equation (B2l) becomes
F = l - F - F L (m5)
2 pe 2 Al e
R1, Ry R,C5  RS,R ,.

The portion of the energy leaving Ri which is intercepted by the

circular ares Cé can be determined from equation (Al9) as

Foo- .Q_Fi_l_i_) \/(Li)zcscth + 4h1h + cec v(2ud sin?y - 18)| (Be6)

1’%0 L + Ly

Configuration-factor algebra for the exchenge of radiant energy

2

between Rl and Rg glves

2 _
REF - RBF =
1o "R E 272 2

Ry, Ry Ro, Ry Rg’ Co

1 1 2 1
Rg'co Ry, Co

ROF - <RHF - RSF > (B27)

P\O\O
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By using equations (A19) and (A20), equation (B27) yields
2
FR2 oE = __75l__3f- VQLé) cscgw + thlg - ¢sc W(QLgsin2w + L%) (B28)
1’ o 2(Ll + LZ)

Substitution of equations (B26) and (B28) into equation (B25) gives
the configuration factor for a ring of a cone radiating to itself as

H H

2
F, ,=1- 1 \/(L‘?.) cscg\y + MLElILg - Li cos ¥ cot V¥ (B29)
RisR{ I, + Ly

It can be seen from equation {(B29) that the portion of its own
radiated energy that a ring on the surface of a cone receives is dependent
upon the relative position of the ring as well as on the height of the
ring. .

Hemisphere.- For a hemlspherical surface of revolution, since the
total height equals a, equation (B21) can be written

F =1-F -F (B30)
2 n2 2 1 2 pa
Ry Ry RipCo RpyRp
where
2 2
RF , SRy wEE,
RO, CO Ro, CO l) o
F = (B31)
RS, C3 g2
1
By using equations (A29) and (A35), equation (B30) becomes
1y
FR2 R = E; (BBZ)
1’71

Here again, as for a cylinder, F > R2 is dependent upon the
171

height of the ring Li and not upon its position above the base plane.
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Figure 1.- Relative positions of isothermal black surfaces.
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1
Figure 5.- Geometry of cone (RO,Cl).
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Figure T.- Geometry of hemisphere (R%,Cl).
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Figure 10.- Geometric representation of configuration-factor algebra.
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